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We define the concept of an A-regularized approximation process and prove for it
uniform convergence theorems and strong convergence theorems with optimal and
non-optimal rates. The sharpness of non-optimal convergence is also established.
The general results provide a unified approach to dealing with convergence rates of
various approximation processes, and also of local ergodic limits as well. As appli-
cations, approximation theorems, and local Abelian and Cesáro ergodic theorems
with rates are deduced for n-times integrated solution families for Volterra integral
equations, which include n-times integrated semigroups and cosine functions as
special cases. Applications to (Y)-semigroups and tensor product semigroups are
also discussed. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

A net {Ta}a ¥ C of bounded linear operators on a Banach space X is called
an approximation process on X if ||Tax−x||Q 0 for all x ¥X. The process
{Ta} is said to possess the saturation property if there exists a positive func-
tion e(a) tending to 0 such that every x ¥X for which ||Tax−x||=o(e(a)) is
an invariant element of {Ta}, i.e., Tax=x for all a, and if the set

F[X; Ta]={x ¥X; ||Tax−x||=O(e(a))}



contains at least one non-invariant element. In this case, the approximation
process {Ta} is said to have optimal approximation order O(e(a)) or to be
saturated in X with order O(e(a)), and F[X; Ta] is called its Favard class or
saturation class. See, e.g., [4, p. 434] for the above definition.

Thus the saturation concept consists of determination of the optimal
approximation order O(e(a)) and the corresponding saturation class. In
[4], Butzer and Nessel considered saturation with the optimal approxima-
tion order O(r−h)(rQ.) (i.e., e(r)=r−h, r > 0) for h > 0 for approxima-
tion processes which satisfy some extra conditions. In [9], under some
further assumptions, the non-optimal rate O(r−c)(rQ.), 0 < c < h, is
described in terms of that of a K-functional, and is shown to be sharp.
These general results provide a unified approach to convergence rates for
various approximation processes, such as n-times integrated semigroups
and n-times integrated cosine functions [9], in particular.

However, from the viewpoint of application, the assumptions required in
[4, 9] are rather complicated. The aim of this paper is to formulate an easy-
implementing format for treating saturation and non-optimal rates for
processes under simpler assumptions and with the more general optimal
approximation order O(e(a)). For the A-regularized approximation process
to be defined in Section 2, theorems about saturation (Theorem 2.6),
non-optimal convergence (Theorem 2.7) and the sharpness of non-
optimal convergence rate (Theorem 2.9) will be established. We also
show in Theorem 2.4 that an A-regularized approximation process on a
Grothendieck space with the Dunford–Pettis property converges uniformly
if its range is contained in the domain of A.

To demonstrate the usefulness of our general results, we consider their
applications to some examples. In Section 3, we deduce a local Abelian
ergodic theorem (Theorem 3.4) with rates for generalized Hille–Yosida
operators, which generalizes results in [5, 6] on C0-semigroups and cosine
operator functions. In Section 4, approximation at 0 of an n-times
integrated solution family S( · ) will be considered. In attempt to obtain
wider result, we shall consider some kind of local means Qm(t), t \ 0, m \ 0
of (n!/tn) S(t), instead of S(t) itself. These local means include in particu-
lar Q0(t)=(n!/tn) S(t), and Q1(t)=(a f S(t))/(a f jn(t)). Thus we can
deduce approximation theorem and local ergodic theorems with rates
(Theorems 4.4, 4.5, and 4.7) for n-times integrated solution families. In
particular, they reduce to approximation and local Cesáro and Abelian
ergodic theorems (Theorems 4.8 and 4.9) for n-times integrated semigroups
and n-times integrated cosine functions (cf. [9]), which contain as special
cases some results on C0-semigroups [7] and cosine operator functions [5].
In Section 5, we will deduce approximation theorems for (Y)-semigroups
and tensor product semigroups. Finally, we remark that the general results in
[4, 9] seem not applicable to the derivation of our results in Sections 4 and 5.
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2. REGULARIZED APPROXIMATION PROCESSES

This section is devoted to general results on the strong and uniform
convergence of regularized approximation processes, with emphasis on
their optimal and non-optimal convergence rates.

We start with the following definition of a regularized approximation
process. In the sequel, we use the notations D(T), R(T), and N(T), for the
domain, range, and null space, respectively, of a linear operator T.

Definition 2.1. Let e(a) be a positive function tending to 0. A net {Ta}
of bounded linear operators on X is called an A-regularized approximation
process of order O(e(a)) on X if it is uniformly bounded, i.e., ||Ta || [M for
someM> 0 and all a, and satisfies

(A1) there are a (necessarily densely defined) closed linear operator A
on X and a uniformly bounded approximation process {Sa} on X such that

R(Sa) … D(A) and SaA … ASa=(e(a))−1 (Ta−I) for all a.

In this case, the process {Sa} is called a regularization process associated
with {Ta}.

Notice that when e(r)=r−h, r > 0, the above definition reduces to the
one that was considered in [3, 4]. In the following, {Ta} denotes an
A-regularized approximation process of order O(e(a)) with regularization
process {Sa}.

Lemma 2.2. (i) x ¥ D(A) and y=Ax if and only if y=lima(e(a))−1

(Ta−I) x.
(ii) D(A) is dense in X, and ||Tax−x||Q 0 for all x ¥X.

(iii) If A is bounded, then ||Ta−I||=O(e(a))Q 0.
(iv) ||Ta−I||Q 0 implies A ¥ B(X) if either R(Ta) … D(A) for all a, or

Sa and Ta satisfy the following condition:
(A2) ||Ta−I||Q 0 implies ||Sa−I||Q 0.

Proof. (i) This follows easily from (A1) and the closeness of A.
(ii) For any x ¥X we have x=lim Sax ¥ D(A). Hence X=D(A).

Since ||Tax−x||=e(a) ||SaAx||Q 0 for all x ¥ D(A), the convergence for all
x ¥X follows from the uniform boundedness of {Ta}.

(iii) This follows from (A1) and the boundedness of A.
(iv) Suppose ||Ta−I||Q 0. Then Ta is invertible for some a. If R(Ta) …

D(A), then X=R(Ta) … D(A). If (A2) holds, then by (A2) we have

||SaTa−I|| [ ||SaTa−Sa ||+||Sa−I|| [M1 ||Ta−I||+||Sa−I||Q 0.
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Hence Sa1Ta1 is invertible for some a1, so that D(A) ‡ R(Sa1 ) ‡ R(Sa1Ta1 )
=X. In both case we have D(A)=X and so A is bounded on X.

Proposition 2.3. (i) {Tg
ax*} converges weakly* to x* for all x* ¥X*.

(ii) Under the additional condition that R(Ta) … D(A) for all a, the
following are equivalent: (a) ||Tg

ax*−x*||Q 0; (b) {Tg
ax*} has a weak cluster

point; (c) x* ¥ D(A*).

Proof. (i) This follows immediately from (ii) of Lemma 2.2.
(ii) While ‘‘(a) S (b)’’ is obvious, we show other implications. First,

we see that TaD(A) … D(A) and TaAx=ATax for all x ¥ D(A). Indeed, if
x ¥ D(A), then by (A1) we have Tax=e(a) SaAx+x ¥ D(A) and ATax=
e(a) ASaAx+Ax=(Ta−I) Ax+Ax=TaAx, and under the additional
condition R(Ta) … D(A), one has TaA … ATa. Then, by the argument in [27,
p. 408], it can be shown that R(Tg

a ) … D(A*) and Tg
aA* … A*T

g
a . If a

subnet {Tg
bx*} has a weak limit, then by (i) we have x*=w*-lim Tg

ax*=
w-lim Tg

bx* ¥ D(A*). This shows ‘‘(b) S (c).’’
Similarly, (A1) implies that

R(Sg
a ) … D(A*) and Sg

aA* … A*S
g
a=(e(a))

−1 (Tg
a −I*)(2.1)

for all a.

Since {Sa} is uniformly bounded, it follows from (2.1) that ||Tg
ax*−x*||Q 0

for all x* ¥ D(A*). Hence (c) implies (a), by the uniform boundedness
of {Ta}.

A Banach space X is called a Grothendieck space if every weakly* con-
vergent sequence in X* is weakly convergent (see, e.g., [28] for equivalent
definitions), and is said to have the Dunford–Pettis property if Oxn, x

g
nPQ 0

whenever xn Q 0 weakly in X and xg
n Q 0 weakly in X*. The spaces L.,H.,

and B(S,S) are particular examples of Grothendieck spaces with the Dunford–
Pettis property (see [19]). A common phenomenon in such spaces is that
strong operator convergence often implies uniform operator convergence.
For instance, a theorem of Coulhon [10] asserts that if an approximation
process {Tn} on a Grothendieck space X with the Dunford–Pettis property
is uniformly power bounded, i.e., ||Tkn || [M for all n, k \ 1, and if the dual
operators {Tg

n} is an approximation process on X*, then ||Tn−I||Q 0. The
following is a theorem of this type for regularized approximation processes.

Theorem 2.4. Let {Ta} be an A-regularized approximation process of
order O(e(a)) on a Grothendieck space X with the Dunford–Pettis property.
If R(Ta) … D(A) for all a, then A ¥ B(X) and ||Ta−I||=O(e(a)).
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Proof. Take a subsequence {Tan} and let Vn=Tan −I. Since Ta−I
converges to 0 strongly on X, Vg

nx
g
n converges weakly* and hence weakly

to 0 for any bounded sequence {xgn} in X*. In particular, {Vg
nx*} has the

weak limit 0, and hence x* is a weak cluster point of {Tg
ax*} for every

x* ¥X*, so that, by Proposition 2.3(ii), ||Tg
ax*−x*||Q 0 for all x* ¥X*. It

follows that Vnxn converges weakly to 0 for any bounded sequence {xn}
in X. Since X has the Dunford–Pettis property, we have OV2nxn, x

g
nP=

OVnxn, V
g
nx

g
nPQ 0. Since we can choose unit xn and xgn such that ||V2n || [

OV2nxn, x
g
nP+1/n, it follows that ||V2n ||Q 0, so that for large n, V2n−I is

invertible, and so is Vn+I=Tan . Hence X=R(Tan ) … D(A), and A is
bounded. Now Lemma 2.2(iii) implies that ||Ta−I||=O(e(a)).

As usual the rates of convergence will be characterized by means of
K-functional and relative completion, which we recall now.

Definition 2.5. Let X be a Banach space with norm || · ||X, and Y a
submanifold with seminorm || · ||Y. The K-functional is defined by

K(t, x) :=K(t, x, X, Y, || · ||Y)=inf
y ¥ Y
{||x−y||X+t ||y||Y}.

If Y is also a Banach space with norm || · ||Y, then the completion of Y
relative to X is defined as

ỸX :={x ¥X : ,{xn} … Y such that lim
nQ.
||xn−x||X=0 and sup

n
||xn ||Y <.}.

It is known [3] that K(t, x) is a bounded, continuous, monotone
increasing and subadditive function of t for each x ¥X, and K(t, x, X,
Y, || · ||Y)=O(t) if and only if x ¥ ỸX. With these terminologies we now
prove theorems for convergence rates. The following is an optimal
convergence (saturation) theorem.

Theorem 2.6. Let {Ta} be an A-regularized approximation process of
order O(e(a)), and let D(A) be equipped with the graph norm || · ||D(A). For
x ¥X, we have:

(i) ||Tax−x||=o(e(a)) if and only if x ¥N(A), if and only if Tax=x
for all a.

(ii) The following are equivalent:

(a) ||Tax−x||=O(e(a));
(b) x ¥ D(A)6 X;

(c) x ¥ D(A) in the case that X is reflexive.
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Proof. (i) This is an immediate consequence of (A1).
(ii) (a) S (b). By the assumption (A1), there is an M1 > 0 such that

||Sa || [M1 for all a. If ||Tax−x||=O(e(a)), then ||Tax−x|| [M3e(a) for
someM3 > 0, and so

||Sax||D(A)=||Sax||+||ASax||=||Sax||+>
1
e(a)
(Tax−x)> [M1 ||x||+M3.

Let {xn :=Sanx} be any subsequence of {Sax}. Then {xn} … D(A) and
xn Q x, by (A1). Hence we have x ¥ D(A)6 X.

(b) S (a) and (c). Assumption (A1) implies

1
e(a)
||Ta y−y|| [M1 ||Ay|| [M1 ||y||D(A) for all y ¥ D(A) and a.

(2.2)

If x ¥ D(A)6 X, then there is a sequence {xn} … D(A) such that ||xn ||D(A) [M2

for some M2 > 0 and ||xn−x||Q 0. Substituting y=xn into (2.2) and then
letting nQ., we obtain ||Tax−x|| [M1M2e(a).

If X is reflexive, since ||Axn || [M2, by the Alaoglu theorem there is a
subsequence {xnk} of {xn} such that Axnk Q y weakly. Then the closedness
of A implies that A is weakly closed, thus x ¥ D(A) and y=Ax (see
[11, Problem 1.4]) and D(A)6 X … D(A). Hence, when X is reflexive, one
has D(A)6 X=D(A) and (b) becomes (c).

The next theorem is about non-optimal convergence.

Theorem 2.7. Let 0 [ e(a) [ f(a)Q 0. IfK(e(a), x, X, D(A), || · ||D(A))=
O(f(a)), then ||Tax−x||=O(f(a)). The converse statement is also true
under the following assumption:

(A3) ||Sax−x||=O(f(a)) whenever ||Tax−x||=O(f(a)).

Proof. By (A1) and (2.2) we have for any y ¥ D(A) and a

||Tax−x|| [ ||(Ta−I)(x−y)||+||Ta y−y||

[ (M+1) ||x−y||+e(a) M1 ||y||D(A)

[ max{M+1, M1}(||x−y||+e(a) ||y||D(A)),

and by taking infimum over all y ¥ D(A), we arrive at

||Tax−x|| [ max{M+1, M1} K(e(a), x, X, D(A), || · ||).
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For the converse, suppose ||Tax−x||=O(f(a)). Then by (A1) and (A3)
we have for all a

K(e(a), x, X, D(A), || · ||D(A)) [ ||x−Sax||+e(a) ||Sax||D(A)

[ ||x−Sax||+||Tax−x||+e(a) M1 ||x||

=O(f(a)).

To consider the sharpness of approximation, we need a result of
Davydov [12, Theorem 1]. For easier application to Theorem 2.9 we
formulate it as the following form.

Proposition 2.8. Let {pa} be a net of continuous seminorms on a
Banach space X satisfying the conditions:

(a) Oa ||pa ||=., where ||pa || :=sup{pa(x); x ¥X, ||x|| [ 1};
(b) the set {x ¥X; lima pa(x)=0} is dense in X.

Then there exists an element x0 ¥X such that supa pa(x0) [ 1 and
Oa pa(x0)=1.

Theorem 2.9. Suppose an A-regularized approximation process {Ta} and
its regularization process {Sa} satisfy condition (A2). Then A is unbounded if
and only if for each f(a) with 0 [ e(a) < f(a)Q 0 and f(a)/e(a)Q. there
exists xf ¥X such that

||Taxf−xf || 3
=O(f(a));
] o(f(a)).

Proof. If A is bounded, then by Lemma 2.2(iii) we have ||Ta−I||=
O(e(a)) so that ||Ta−I||=o(f(a)). This shows the sufficiency.

For the necessity, suppose A is unbounded and define pa(x)=
(f(a))−1 ||Tax−x||, x ¥X. Note that pa is a seminorm on X with ||pa || [
(M+1)/f(a). We show that {pa} satisfies the hypothesis of Proposition 2.8.

By Lemma 2.2(iii), we have Oa ||Ta−I|| > 0, so that Oa ||pa ||=
Oa(f(a))−1 ||Ta−I||=.. Moreover, we have pa(x)=(f(a))−1 e(a) ||SaAx||
Q 0 for all x ¥ D(A), by (A1) and the assumption f(a)/e(a)Q.. Hence
the set {x ¥X : lima pa(x)=0} contains D(A), which is dense in X by (A1).

The hypothesis of Proposition 2.8 being satisfied, it follows that there
exists an xf ¥X such that supa pa(xf) [ 1 and Oa pa(xf)=1; i.e., xf
satisfies ||Taxf−xf ||=O(f(a)) and ||Taxf−xf || ] o(f(a)).
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3. LOCAL ABELIAN ERGODIC THEOREMS WITH RATES

Most of the results in this section are extensions of some known results
in [5, 6, 15, 16, 20]. We demonstrate them here in order to show how they
can be deduced from our general results in Section 2, and to prepare for
their applications in Sections 4 and 5.

Let A be a closed linear operator on X such that

(w,.) … r(A) and ||l(l−A)−1|| [M for all l > w.(3.1)

Such A is called a generalized Hille–Yosida operator of type (M, w) [20].
We have that

R((l−A)−1) … D(A) and(3.2)

(l−A)−1 A … A(l−A)−1=l(l−A)−1−I.

Let A1 be the part of A in X1 :=D(A).

Theorem 3.1. For a generalized Hille–Yosida operator A we have:
(i) ||l(l−A)−1 x−x||Q 0 as lQ. if and only if there is a sequence

{ln}Q. such that {ln(ln−A)−1 x} converges weakly, if and only if x ¥X1.
(ii) ||l(l−Ag

1 )
−1 x*−x*||Q 0 as lQ. if and only if there is a

sequence {ln}Q. such that {ln(ln−A
g
1 )
−1 x*} converges weakly in Xg

1 , if
and only if x* ¥ D(Ag

1 ).

Proof. (i) From (3.1) and (3.2) one can easily see (e.g., [31, p. 218])
that l(l−A)−1 xQ x as lQ. if and only if there is a sequence {ln}Q.
such that {ln(ln−A)−1 x} converges weakly, if and only if x ¥X1.

(ii) Since A(l−A)−1 x=l(l−A)−1 x−x ¥X1 for all x ¥X1, we see
that (l−A)−1 X1 … D(A1) and (l−A)−1 A1x=A1(l−A)−1 x=l(l−A)−1

x−x for all x ¥X1 and l > w, from which it follows that (l−A1)
(l−A)−1 x=x for all x ¥X1, so that (l−A1)−1=(l−A)−1|X1 . Thus we
have

R((l−A1)−1) … D(A1) and(3.3)

(l−A1)−1 A1 … A1(l−A1)−1=l(l−A1)−1−I|X1 ,

and l(l−A1)−1 xQ x for all x ¥X1 as lQ..
Let Tl=Sl=l(l−A1)−1 for l > w. The above argument shows that {Tl}

is an A1-regularized approximation process of order O(l−1)(lQ.) on X1,
satisfying R(Tl) … D(A1) and having itself as a regularization process (and
so (A2) and (A3) hold automatically). This implies A1 is densely defined in
X1, in particular. Then, from Proposition 2.3 we deduce the assertion (ii).
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Theorem 3.2. Let A be a generalized Hille–Yosida operator on X.

(i) ||l(l−A)−1−I||Q 0 as lQ. if and only if A ¥ B(X). In this case,
||l(l−A)−1−I||=O(l−1)(lQ.).

(ii) If X1 is a Grothendieck space with the Dunford–Pettis property, A
must be bounded on X.

Proof. Note that A ¥ B(X) if and only if A1 is bounded. Indeed, if A1
is bounded, then by (3.1) and (3.3) we have ||l(l−A1)−1−I|X1 || [
||A1 || ||(l−A1)−1||Q 0 as lQ., so that for large l, l(l−A1)−1 is invertible
in X1 and so X1 … (l−A1)−1 X1=D(A1) … D(A). It follows that D(A) is
closed and hence A, as a closed operator, must be bounded. Then, by (3.2),
we have ||l(l−A)−1−I|| [ ||A|| ||(l−A)−1||Q 0 as lQ., so that D(A)=X
and A ¥ B(X). The theorem follows by using this fact and applying
Lemma 2.2 and Theorem 2.4 to Tl=Sl=l(l−A)−1|X1 .

Remarks. Part (ii) of Theorem 3.2 was proved in [19] for generators of
C0-semigroups and in [25, 26] for generators of cosine operator functions.
For more general results than Theorems 3.1 and 3.2 for pseudo-resolvents
we refer to [26, Theorems 1 and 6].

To deduce convergence theorem with rates, we first recall the following
lemma, a proof of which can be found in [20, Lemma 3.3.2].

Lemma 3.3. Let A be a generalized Hille–Yosida operator of type
(M, w), and let A1 be its part in X1=D(A). Then for x ¥X1 we have

K(t, x, X, D(A), || · ||D(A)) [K(t, x, X1, D(A1), || · ||D(A1))

[MK(t, x, X, D(A), || · ||D(A)).

Thus we deduce from Theorems 2.6, 2.7, 2.9, and Lemma 3.3 the follow-
ing theorem.

Theorem 3.4. Let A be generalized Hille–Yosida operator, and let A1 be
the part of A in X1=D(A). Then the following are true for x ¥X1 and
0 < b [ 1:

(i) ||l(l−A)−1 x−x||=o(l−1)(lQ.) if and only if x ¥N(A).
(ii) ||l(l−A)−1 x−x||=O(l−b)(lQ.) if and only if K(t, x, X,

D(A), || · ||D(A))=O(tb)(tQ 0+), if and only if x ¥ D(A1)6 X1 in the case that
b=1, if and only if x ¥ D(A1) in the case that b=1 and X is reflexive.
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(iii) A is unbounded if and only if for each 0 < b < 1 there exists
xg
b ¥X1 such that

||l(l−A)−1 xg
b−x

g
b || 3
=O(l−b)
] o(l−b)

(lQ.).

Remark. For work dealing with (ii) of Theorem 3.4 see [16; 20, p. 61],
and for parts of the theorem for the cases of generators of C0-semigroups
and of cosine operator functions see [5, 6].

We end this section with an application to the infinitesimal generator A
of a semigroup {T(t); t > 0} of class (0, A) (see [15, pp. 342–344]). By
definition, T( · ) satisfies: (i) T( · ) is strongly continuous on (0,.); (ii)
{T(t) x; x ¥X, t > 0} is dense in X; (iii) >10 ||T(t) x|| dt <. for each x ¥X;
(iv) limlQ. lR(l) x=x for all x ¥X, where R(l) x :=>.0 e−ltT(t) x dt for
all x ¥X and l > w (the type of T( · )).

The operator A0, defined by A0x :=limtQ 0+ t−1(T(t)−I) x, is closable.
The closure A of A0 is called the infinitesimal generator of T( · ). It is
known that if l > w, then l ¥ r(A) and R(l)=(l−A)−1. From this and (iv)
we see that A is a generalized Hille–Yosida operator and is densely defined.
Thus, for the infinitesimal generator A of a semigroup of class (0, A),
Theorems 3.1, 3.2, and 3.4 hold with X1=X and A1=A.

4. APPROXIMATION OF N-TIMES INTEGRATED
SOLUTION FAMILIES

Let A be a closed linear operator in X and a ¥ L1loc(R+) be a nondecreas-
ing positive kernel. Consider the Volterra equation,

u(t)=f(t)+F
t

0
a(t−s) Au(s) ds, t \ 0,(VE; A, a, f)

for f ¥ C([0,.); X).
A family {S(t); t \ 0} in B(X) is called an n-times integrated solution
family for (VE, A, a, f) (see [2, 21]) if

(S1) S( · ) is strongly continuous on [0,.) and S(0)=I if n=0 and
0 if n \ 1;

(S2) S(t) x ¥ D(A) and AS(t) x=S(t) Ax for all x ¥ D(A) and t \ 0;
(S3) a f S(t) x ¥ D(A) and S(t) x=(tn/n!) x+A > t0 a(t−s) S(s) x ds

for all x ¥X and t \ 0.

A 0-times integrated solution family is also called a solution family or
resolvent family [13, 18, 22].
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The notion of an n-times integrated solution family is an extension of the
concepts of n-times integrated semigroups [1, 17] and n-times integrated
cosine functions [29] (corresponding to the cases a — 1 and a(t)=t,
respectively). The existence of an n-times integrated solution family for
(VE; A, a, f) is equivalent to the existence of unique solution of the
Volterra equation (VE; A, a, (tn/n!) x) for every x ¥X (see [21, Theorem 2.5]).

We shall assume that

||S(t)|| [Mtn for all t \ 0.(4.1)

Put jn(t)=tn/n! for t \ 0 and n \ 0 and denote by a0 the Dirac measure d0
at 0. For each m \ 0, let am+1(t)=a f am(t) for t \ 0, and

˛km(0)=0;
km(t)=

am+1 f jn(t)
am f jn(t)

for t > 0.

We define the local means of (n!/tn) S(t):

Qm(t) x=
am f S(t) x
am f jn(t)

for x ¥X and t > 0.

In particular, k0(t)=(a f jn(t))/jn(t), k1(t)=(a f a f jn(t))/(a f jn(t)),
Q0(t)=(n!/tn) S(t), and Q1(t)=(a f S(t))/(a f jn(t)), which are > t0 a(s) ds,
(a f a f 1(t))/(a f 1(t)), S(t), and (a f S(t))/(a f 1(t)), respectively, when
n=0. Since a is nondecreasing and positive, am(t) and am f jn(t) are
nondecreasing positive functions of t. Therefore

km(t)=
1

am f jn(t)
F
t

0
a(t−s)(am f jn)(s) ds [ F

t

0
a(s) dsQ 0(4.2)

as tQ 0. Note further that

||Qm(t) x|| [
1

am f jn(t)
F
t

0
am(t−s) ||S(s) x|| ds

[
M ||x||
am f jn(t)

F
t

0
am(t−s) sn ds=Mn! ||x||

and we have

||Qm(t)|| [Mn! (m \ 0, t > 0).(4.3)
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Lemma 4.1. Let S( · ) be an n-times integrated solution family for
(VE, A, a, f) such that ||S(t)|| [Mtn for all t \ 0, and let A1 be the part of A
in X1 :=D(A). Then

Q0(t) D(A) … D(A) and Q0(t) Ax=AQ0(t) x(4.4)

for x ¥ D(A),

Qm+1(t) X … D(A) and(4.5)

Qm+1(t) A … AQm+1(t)=
1
km(t)

(Qm(t)−I),

Q0(t) D(A1) … D(A1) and Q0(t) A1x=A1Q0(t) x(4.6)

for x ¥ D(A1),

Qm+1(t) X1 … D(A1) and(4.7)

Qm+1(t) A1 … A1Qm+1(t)|X1=
1
km(t)

(Qm(t)−I)|X1

for all m \ 0 and t > 0.

Proof. Relation (4.4) follows from (S2). It implies Q0(t) X1 …X1. To
show (4.6), let x ¥ D(A1). Then x ¥ D(A), Ax ¥X1, and A1x=Ax. By (4.4)
we have Q0(t) x ¥ D(A) and AQ0(t) x=Q0(t) Ax=Q0(t) A1x ¥ Q0(t) X1
…X1, so that Q0(t) x ¥ D(A1) and A1Q0(t) x=AQ0(t) x=Q0(t) A1x.

To show (4,5) for m \ 0, write

Qm+1(t) x=
1

am+1 f jn(t)
[am f (a f S)](t) x

=
1

am+1 f jn(t)
F
t

0
am(t−s)(a f S)(s) x ds

for all x ¥X. Since the integral

F
t

0
Aam(t−s)(a f S)(s) x ds=F

t

0
am(t−s) A(a f S)(s) x ds

=F
t

0
am(t−s)[S(s) x−jn(s)] x ds
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exists, the closedness of A implies that [am f (a f S)](t) x ¥ D(A) and

A[am f (a f S)](t) x=F
t

0
Aam(t−s)(a f S)(s) x ds

=[agmA(a f S)](t) x

=agmS(t) x−am f jn(t) x.

Hence Qm+1(t) x ¥ D(A) and

AQm+1(t) x=
1

am+1 f jn(t)
[agmA(a f S)](t) x

=
1

am+1 f jn(t)
[agmS(t) x−am f jn(t) x]

=
1
km(t)

[Qm(t) x−x]

for all x ¥X. Moreover, if x ¥ D(A), then by (S2) and (S3) we have

AQm+1(t) x=
1

am+1 f jn(t)
[am f A(a f S)](t) x

=
1

am+1 f jn(t)
[am f (a f S)](t) Ax

=Qm+1(t) Ax.

This shows (4.5).
To show (4.7), let x ¥X1 and let {xn} … D(A) converge to x. R(Qm+1(t)) …
D(A) implies Qm+1(t) x ¥ D(A). Since A is closed, AQm+1(t) is bounded, so
that AQm+1(t) x=limnQ. AQm+1(t) xn=limnQ. Qm+1(t) Axn ¥ D(A)=X1.
This and (4.5) show thatQm+1(t) x ¥ D(A1) andA1Qm+1(t) x=AQm+1(t) x=
1
km(t)
(Qm(t)−I) x for all x ¥X1. When x ¥ D(A1), we have x ¥ D(A),

Ax ¥X1, and A1x=Ax so that Qm+1(t) A1x=Qm+1(t) Ax=AQm+1(t) x=
A1Qm+1(t) x. This completes the proof.

Lemma 4.2. Let a ¥ L1loc(R+) be nondecreasing and positive, and let S( · )
be an n-times integrated solution family for (VE, A, a, f) such that ||S(t)|| [
Mtn for all t \ 0.

(i) For m \ 0, ||Qm(t) x−x||Q 0 as tQ 0+ if and only if Qm(t) xQ x
weakly as tQ 0+, if and only if there is a sequence {tn} such that
Qm(tn) xQ x weakly for the case m \ 1, if and only if x ¥X1.
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(ii) If n=0, then A is densely defined in X.

Proof. (i) It follows from (4.2), (4.3), and (4.5) that for all m \ 0

||Qm(t) x−x|| [ km(t) ||Qm+1(t)|| ||Ax||

[ km(t) Mn! ||Ax||Q 0

as tQ 0+ for all x ¥ D(A), and hence Qm(t) xQ x for all x ¥X1, by (4.3).
Conversely, from the estimate,

|OQm+1(t) x−x, x*P|
(4.8)

=
1

am+1 f jn(t)
:7F t

0
a(t−s)(am f S(s) x) ds

−F
t

0
a(t−s)(am f jn)(s) x ds, x*8:

[
1

am+1 f jn(t)
F
t

0
a(t−s)(am f jn)(s) |OQm(s) x−x, x*P| ds

[ sup{|OQm(s) x−x, x*P|; 0 [ s [ t}, x ¥X, x* ¥X*,

one sees that if Qm(t) xQ x weakly, then Qm+1(t) xQ x weakly, which and
the fact thatR(Qm+1(t)) … D(A) show that x ¥X1. Whenm \ 1,R(Qm(tn)) …
D(A), and so x=w-lim Qm(tn) x ¥X1.

(ii) When n=0, since Q0(t)=S(t)Q I strongly as tQ 0+, (4.8)
implies that

||Q1(t) x−x|| [ sup{||S(s) x−x||; 0 [ s [ t}Q 0

for all x ¥X. Then we have X1=X, by the fact that Q1(t) X … D(A). That
is, A is densely defined for the case n=0.

Thus, from (4.4), (4.7) and Lemma 4.2, we see that X1 is invariant under
Qm(t) for each m \ 0, and {Tt :=Qm(t)|X1} is an A1-regularized approxi-
mation process on X1 with the regularization process {St :=Qm+1(t)|X1}
and with the optimal order O(km(t))(tQ 0+). In particular, D(A1) is dense
in X1, by Lemma 2.2(ii). Moreover, we have TtD(A1) … D(A1) if m=0 and
R(Tt) … D(A1) if m \ 1.

Lemma 4.3. The above pair ({Tt}, {St}) satisfies (A2). If km(t) is non-
decreasing for t near 0, then (A3) with f(t)=(km(t))b (0 < b [ 1) also holds.
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Proof. From (4.8) one can see that ||St−I||X1 [ sup{||Ts−I||X1 ; 0 [ s [ t},
which shows (A2). Moreover, if ||Ttx−x|| [M(km(t))b for all t ¥ [0, 1],
then ||Stx−x|| [M sup{(km(s))b; 0 [ s [ t} [M(km(t))b for all t ¥ [0, 1],
showing (A3).

From Lemmas 2.2 and 4.3 and Theorem 2.4 we deduce the following
uniform convergence theorem.

Theorem 4.4. Let a ¥ L1loc(R+) be nondecreasing and positive, and let
S( · ) be an n-times integrated solution family for (VE, A, a, f) such that
||S(t)|| [Mtn for all t \ 0.

(i) For m \ 0, ||Qm(t)−I||Q 0 as tQ 0+ if and only if A ¥ B(X). In
this case, ||Qm(t)−I||=O(km(t))(tQ 0+).

(ii) When X1 is a Grothendieck space with the Dunford–Pettis
property, A must be bounded on X, and consequently ||S(t)−jn(t) I||=
O(a f jn(t))(tQ 0+).

Proof. (i) This follows from Lemmas 2.2 and 4.3.
(ii) Applying Theorem 2.4 to {Tt :=Q1(t)|X1} yields that A1 is

bounded on X1, so that ||Q1(t)|X1 −I|X1 || [ k1(t) ||A1 || ||Q2(t)|| [ k1(t) ||A1 ||
Mn!Q 0 as tQ 0+. Hence Q1(t)|X1 is invertible on X1 for small t. Then by
(4.5) we have X1=R(Q1(t)|X1 ) … R(Q1(t)) … D(A), which shows that D(A)
is closed and A is bounded. Due to Lemma 4.3, (iii) and (iv) of Lemma 2.2
together imply that A ¥ B(X). By (i), ||Qm(t)−I||=O(km(t))(tQ 0+), and
in particular, ||S(t)−jn(t) I||=O(a f jn(t))(tQ 0+).

From Theorems 2.6, 2.7, 2.9, and Lemma 4.3 we can deduce the next
theorem.

Theorem 4.5. Let S( · ) be as assumed in Theorem 4.4 and let m \ 0,
0 < b [ 1, and x ¥X1=D(A).

(i) ||Qm(t) x−x||=o(km(t))(tQ 0+) if and only if x ¥N(A1)=N(A).
(ii) ||Qm(t) x−x||=O(km(t))(tQ 0+) if and only if x ¥ D(A1)6 X1

(=D(A1), if X is reflexive).
(iii) If K(km(t), x, X1, D(A1), || · ||D(A1))=O((km(t))

b)(tQ 0+), then
||Qm(t) x−x||=O((km(t))b)(tQ 0+). The converse is also true if km(t) is
nondecreasing for t near 0.

(iv) A is unbounded if and only if for some(each) 0 < b < 1 and
m \ 0 there exist xg

m, b ¥X1=D(A) such that

||Qm(t) x
g
m, b−x

g
m, b || 3

=O((km(t))b)
] o((km(t))b)

(tQ 0+).
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If m=0, Theorem 4.5 becomes an approximation theorem; if m \ 1, it is
a local Cesáro ergodic theorem.

Next, we consider the case that the kernel a ¥ L1loc(R+) is Laplace trans-
formable, i.e., there is w \ 0 such that â(l)=>.0 e−lta(t) dt <. for all
l > w. Then it is easy to see that â(l)Q 0 as lQ..

Lemma 4.6. Suppose â(l) <. for all l > w, and let S( · ) be an n-times
integrated solution family for (VE, A, a, f) such that ||S(t)|| [Mtn for all
t \ 0. Then (â(l))−1 ¥ r(A), ((â(l))−1−A)−1=ln+1â(l) Ŝ(l), and ||(â(l))−1

((â(l))−1−A)−1|| [Mn! for all l > w.

Proof. Under the assumption (4.1), we can take Laplace transform of
the equation in (S3) to obtain

Ŝ(l) x=˛
1
ln+1

x+â(l) Ŝ(l) Ax, x ¥ D(A),

1
ln+1

x+Aâ(l) Ŝ(l) x, x ¥X

for l > w. Thus

ln+1â(l) Ŝ(l)((â(l))−1−A) … ((â(l))−1−A) ln+1â(l) Ŝ(l)=I,

that is, (â(l))−1 ¥ r(A) and ((â(l))−1−A)−1=ln+1â(l) Ŝ(l) for l > w.
Moreover, (4.1) implies

||(â(l))−1 ((â(l))−1−A)−1||=||ln+1Ŝ(l)||=>ln+1 F.
0
e−ltS(t) dt> [Mn!.

Thus A is a generalized Hille–Yosida operator. Now the following local
Abelian ergodic theorem follows immediately from Theorems 3.1, 3.2,
and 3.4.

Theorem 4.7. Let a ¥ L1loc(R+) be nondecreasing, positive, and Laplace
transformable, and let S( · ) be an n-times integrated solution family for
(VE, A, a, f) such that ||S(t)|| [Mtn for all t \ 0.

(i) ||(â(l))−1 ((â(l))−1−A)−1 x−x||Q 0 as lQ. if and only if
x ¥X1.

(ii) ||(â(l))−1 ((â(l))−1−A)−1−I||Q 0 as lQ. if and only if A ¥

B(X). In this case, ||(â(l))−1 ((â(l))−1−A)−1−I||=O(â(l))(lQ.).
(iii) For x ¥X1, ||(â(l))−1 ((â(l))−1−A)−1 x−x||=o(â(l))(lQ.) if

and only if x ¥N(A).
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(iv) For 0 < b [ 1 and x ¥X1, ||(â(l))−1 ((â(l))−1−A)−1 x−x||=
O((â(l))b)(lQ.) if and only if K(t, x, X, D(A), || · ||D(A))=O(tb)(tQ 0+),
if and only if x ¥ D(A1)6 X1 in the case that b=1, if and only if x ¥ D(A1) in
the case that b=1 and X is reflexive.

(v) A is unbounded if and only if for each 0 < b < 1 there exists
xg
b ¥X1 such that

||(â(l))−1 ((â(l))−1−A)−1 xgb−x
g
b || 3
=O((â(l))b)
] o((â(l))b)

(lQ.).

Remarks. (i) Direct proofs for Theorems 4.4(i) and 4.5 have been
given in [8] for the case n=0, m=0, 1.

(ii) Theorem 4.4(ii) implies in particular that every resolvent family
S( · ) on a Grothendieck space with the Dunford–Pettis property satisfies
||S(t)−I||=O(> t0 a(s) ds)(tQ 0+). Specialization for the cases a — 1 and
a(t)=t yields the same assertion for C0-semigroups [19] and cosine
operator functions [25].

If one takes a — 1, then k0(t)=
t
n+1 , k1(t)=

t
n+2 , Q0(t)=(n!/tn) S(t), and

Q1(t)=((n+1)!/tn+1) > t0 S(s) ds. In this case, S( · ) becomes an n-times
integrated semigroup T( · ) with generator A (cf. [1, 17]). Then a combina-
tion of applications of Theorems 4.4 and 4.5 to Q0(t) and Q1(t) and of
Theorem 4.7 leads to the following approximation and local ergodic
theorem.

Theorem 4.8. Let T( · ) be an n-times integrated semigroup with generator
A and satisfying ||T(t)|| [Mtn for all t \ 0.

(i) ||(n!/tn) T(t) x−x||Q 0 as tQ 0+ if and only if ||((n+1)!/tn+1)
> t0 T(s) x ds−x||Q 0 as tQ 0+, if and only if ||l(l−A)−1 x−x||Q 0 as
lQ., if and only if x ¥X1.

(ii) ||(n!/tn) T(t)−I||Q 0 as tQ 0+ if and only if ||((n+1)!/tn+1)
> t0 T(s) ds−I||Q 0 as tQ 0+, if and only if ||l(l−A)−1−I||Q 0 as lQ., if
and only if A ¥ B(X). In this case, ||(n!/tn) T(t)−I||=O(t)(tQ 0+) if and
only if ||((n+1)!/tn+1) > t0 T(s) ds−I||=O(t)(tQ 0+), and ||l(l−A)−1−I||=
O(l−1)(lQ.).

(iii) For x ¥X1, ||(n!/tn) T(t) x−x||=o(t)(tQ 0+) if and only if
||((n+1)!/tn+1) >t0 T(s) x ds−x||=o(t)(tQ 0+), if and only if ||l(l−A)−1 x−x||
=o(l−1)(lQ.), if and only if x ¥N(A1)=N(A).

(iv) For 0 < b [ 1 and x ¥X1, the following are equivalent:
(a) ||(n!/tn) T(t) x−x||=O(tb)(tQ 0+);
(b) ||((n+1)!/tn+1) > t0 T(s) x ds−x||=O(tb)(tQ 0+);
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(c) ||l(l−A)−1 x−x||=O(l−b)(lQ.);
(d) K(t, x, X, D(A), || · ||D(A))=O(tb)(tQ 0+);
(e) x ¥ D(A1)6 X1 in the case that b=1;
(f) x ¥ D(A1) in the case that b=1 and X is reflexive.

(v) A is unbounded if and only if for some(each) 0 < b < 1 there exist
xg
1, b, x

g
2, b, x

g
3, b ¥X1=D(A) such that

>n!
tn
T(t) xg

1, b−x
g
1, b
> 3=O(t

b)
] o(tb)

(tQ 0+),

> (n+1)!
tn+1

F
t

0
T(s) xg

2, b ds−x
g
2, b
> 3=O(t

b)
] o(tb)

(tQ 0+),

and

||l(l−A)−1 xg
3, b−x

g
3, b || 3

=O(l−b)
] o(l−b)

(lQ.).

If one takes a(t)=t, then k0(t)=t2/(n+1)(n+2), k1(t)=t2/(n+3)
(n+4), Q0(t)=(n!/tn) S(t), and Q1(t)=((n+2)!/tn+2) > t0 (t−s) S(s) ds. In
this case, S( · ) becomes an n-times integrated semigroup C( · ) with genera-
tor A (cf. [29]). Similarly, one can deduce from Theorems 4.4, 4.5, and 4.7
the following approximation and local ergodic theorem (cf. [9]).

Theorem 4.9. Let C( · ) be an n-times integrated cosine function with
generator A and satisfying ||C(t)|| [Mtn for all t \ 0.

(i) ||(n!/tn) C(t) x−x||Q 0 as tQ 0+ if and only if ||((n+2)!/tn+2)
> t0 (t−s) C(s) x ds−x||Q 0 as tQ 0+, if and only if ||l(l−A)−1 x−x||Q 0
as lQ., if and only if x ¥X1.

(ii) ||(n!/tn) C(t)−I||Q 0 as tQ 0+ if and only if ||((n+2)!/tn+2)
> t0 (t−s) C(s) ds−I||Q 0 as tQ 0+, if and only if ||l(l−A)−1−I||Q 0 as
lQ., if and only if A ¥ B(X). In this case, ||(n!/tn) C(t)−I||=O(t)
(tQ 0+) if and only if ||((n+2)!/tn+2) > t0 (t−s) C(s) ds−I||=O(t)(tQ 0+),
and ||l(l−A)−1−I||=O(l−1)(lQ.).

(iii) For x ¥X1, ||(n!/tn) C(t) x−x||=o(t2)(tQ 0+) if and only if
||((n+2)!/tn+2) > t0 (t−s) C(s) x ds−x||=o(t2)(tQ 0+), if and only if
||l(l−A)−1 x−x||=o(l−1)(lQ.), if and only if x ¥N(A1)=N(A).

(iv) For 0 < b [ 1 and x ¥X1, the following are equivalent:
(a) ||(n!/tn) C(t) x−x||=O(t2b)(tQ 0+);
(b) ||((n+2)!/tn+2) > t0 (t−s) C(s) x ds−x||=O(t2b)(tQ 0+);
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(c) ||l(l−A)−1 x−x||=O(l−b)(lQ.);
(d) K(t, x, X, D(A), || · ||D(A))=O(t2b)(tQ 0+);
(e) x ¥ D(A1)6 X1 in the case that b=1;
(f) x ¥ D(A1) in the case that b=1 and X is reflexive.

(v) A is unbounded if and only if for some(each) 0 < b < 1 there exist
xg
1, b, x

g
2, b, x

g
3, b ¥X1=D(A) such that

>n!
tn
C(t) xg1, b−x

g
1, b
> 3=O(t

2b)
] o(t2b)

(tQ 0+),

> (n+2)!
tn+2

F
t

0
(t−s) C(s) xg

2, b ds−x
g
2, b
> 3=O(t

2b)
] o(t2b)

(tQ 0+),

and

||l(l−A)−1 xg
3, b−x

g
3, b || 3

=O(l−b)
] o(l−b)

(lQ.).

Remark. Theorems 4.8 and 4.9, except assertion (ii), were originally
proved in [9]. When n=0, these theorems further reduce to some results
in [3–7].

5. APPROXIMATION OF (Y)-SEMIGROUPS AND TENSOR
PRODUCT SEMIGROUPS

In this section, we apply the results in Section 2 to (Y)-semigroups.
Let Y be a closed subspace of X* such that the canonical embedding of X
into Y* is isometric. A semigroup {T(t); t \ 0} of operators on X is
called a (Y)-semigroup [24] if Y is invariant under T*(t) for all t \ 0
and T( · ) x is s(X, Y)-continuous and locally s(X, Y)-Pettis integrable
on [0,.) for each x ¥X. The Y-generator A of T( · ) is defined by Ax :=
s(X, Y)-limtQ 0+ t−1(T(t)−I) x.

Theorem 5.1. Let T( · ) be a (Y)-semigroup which is uniformly bounded
on [0, 1]. We have:

(i) ||T(t)−I||Q 0 if and only if A ¥ B(X). In this case, we have
||T(t)−I||=O(t)(tQ 0+). This always holds if X1 is a Grothendieck space
with the Dunford–Pettis property.

(ii) ||T(t) x−x||Q 0 as tQ 0+ if and only if x ¥ D(A).
(iii) ||T(t) x−x||=o(t) (tQ 0+) if and only if x ¥N(A).
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(iv) For 0 < b [ 1 and x ¥X1=D(A), one has ||T(t) x−x||=O(tb)
(tQ 0+) if and only if K(t, x, X1, D(A1), || · ||D(A1))=O(t

b)(tQ 0+), if and
only if x ¥ D(A1)6 X1 in the case b=1.

(v) A is unbounded if and only if for every (some) 0 < b < 1 there is
xb ¥ D(A) such that

||T(t) xb−xb || 3
=O(tb)
] o(tb)

(tQ 0+).

Proof. Let S(t) x :=s(X, Y)-> t0 T(s) x ds, x ¥X, t \ 0. T(t) is a bounded
linear operator on X, T( · ) is uniformly bounded in every bounded closed
subinterval [a, b] of (0,.), and S( · ) is continuous on (0,.) in operator
norm [24, Lemma 2.1]. Moreover, if T( · ) is uniformly bounded on [0, 1],
then ||S(t)||=O(t)(tQ 0+). We also know [24, Proposition 2.4] that

T(t) D(A) … D(A) and T(t) Ax=AT(t) x(5.1)

for x ¥ D(A), t > 0,

R(S(t)) … D(A) and S(t) A … AS(t)=T(t)−I(5.2)

for t > 0.

It is easy to show that T(t) xQ x implies S(t) xQ x as tQ 0+. If T( · ) is
uniformly bounded on [0, 1], then we see from (5.2) that T(t) xQ x if and
only if x ¥ D(A). From (5.1) and (5.2) we also see that X1=D(A) is
invariant under T(t) and S(t), and {Tt :=T(t)|X1}t > 0 is an A1-regularized
approximation process on X1 of order O(t)(tQ 0+), with the regularization
process {St :=t−1S(t)|X1}t > 0. By taking integrals, one can see that
{Tt :=t−1S(t)|X1}t > 0 is an A1-regularized approximation process on X1 with
the regularization process {St :=2t−2 > t0 S(s) ds|X1}t > 0. One can also check
(A2) and (A3) with f=tb(0 < b [ 1). Hence the assertions can be deduced
from Lemma 2.2, Theorems 2.4, 2.6, 2.7, and 2.9.

In particular, a C0-semigroup on X is a (Y)-semigroup on X* with
Y=X*, and its dual semigroup is a (Y)-semigroup on X* with Y=X …

X**. Another example of (Y)-semigroup is the tensor product semigroup
of two C0-semigroups.

For i=1, 2, let Xi be a Banach space and {Ti(t); t \ 0} … B(Xi) be a
(C0)-semigroup with the infinitesimal generator Ai. Suppose ||Ti(t)|| [
Miewit, t \ 0, i=1, 2. The family {S(t); t \ 0} of operators on B(X2, X1),
defined by S(t) E=T1(t) ET2(t)(E ¥ B(X2, X1)), is a semigroup in the
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algebra B(B(X2, X1)), and is called the tensor product semigroup of T1( · )
and T2( · ) (see [14, 23]). Let Y be the closed linear span of the set
{fx2, xg1 ; x2 ¥X2, x

g
1 ¥X

g
1}, where fx2, xg1 is the linear functional on B(X2, X1)

defined by OB, fx2, xg1 P=OBx2, x
g
1P.

Lemma 5.2 [24, 30]. S( · ) is a (Y)-semigroup on B(X2, X1), and the
(Y)-generator D of S( · ), which is defined by DE := so-limtQ 0+ t−1(S(t) E
−E), is precisely the operator which has as its domain

D(D)={E ¥ B(X2, X1); ED(A2) … D(A1) and A1E+EA2

is bounded on D(A2)},

and sends each such E ¥ D(D) to A1E+EA2.

D is closed relative to the weak operator topology and densely defined
relative to the strong operator topology (see [30, Proposition 3.3]). For
l > w1+w2, l−D is invertible and

(l−D)−1 Ex=F
.

0
e−lt(S(t) E) x dt (E ¥ B(X2, X1), x ¥X2).

If w1+w2 [ 0, then ||S(t)|| [M1M2 for all t \ 0, so that Theorem 5.1
((ii)–(v)) can apply to S( · ). Also we have (0,.) … r(D) and ||l(l−D)−1|| [
M1M2 for all l > 0. Hence the operator D is a generalized Hille–Yosida
operator of type (M1M2, 0) on B(B(X2, X1)), so that the results in Section
3 can be applied to D. Thus we can formulate the following theorem.

Theorem 5.3. Suppose that w1+w2 [ 0. We have:

(i) ||T1(t) ET2(t)−E||Q 0 as tQ 0+ if and only if ||l(l−D)−1 E
−E||Q 0 as lQ., if and only if E ¥ D(D).

(ii) ||T1(t) ET2(t)−E||=o(t) (tQ 0+) if and only if ||l(l−D)−1 E−E||
=o(l−1)(lQ.), if and only if E ¥N(D).

(iii) For 0 < b [ 1 and E ¥ D(D), one has ||T1(t) ET2(t)−E||=O(tb)
(tQ 0+) if and only if ||l(l−D)−1 E−E||=O(l−b)(lQ.), if and only if
K(t, E, B(X2, X1), D(D), || · ||D(D))=O(tb) (tQ 0+). Moreover, in case b=1,
these conditions are equivalent to that E ¥ D(D)6 B(X2, X1).

(iv) D is unbounded if and only if for every (some) 0 < b < 1 there are
Fb, F

−

b ¥ D(D) such that

||T1(t) FbT2(t)−Fb || 3
=O(tb)
] o(tb)

(tQ 0+),
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and

||l(l−D)−1 F −b−F
−

b || 3
=O(l−b)
] o(l−b)

(lQ.).
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